
A

(
p
o
i
w
i
t
1
e
t
p
b
c
©

K

1

o
d
b
w
o
c
[

1
d

Chemical Engineering Journal 141 (2008) 119–129

Determination of the apparent ozonation rate constants of 1:2 metal
complex dyestuffs and modeling with a neural network

Ensar Oguz a,∗, Bülent Keskinler b, Ahmet Tortum c

a Atatürk University, Environmental Engineering Department,
25240 Erzurum, Turkiye

b Gebze Institute of Technology, Environmental Engineering Department,
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bstract

In this study, the apparent ozonation rate constants of 1:2 metal complex dyestuffs under different empirical conditions such as dye concentrations
400–1000 ppm), ozone–air flow rates (5–15 l min−1), the percentages of O3 in the ozone–air flow rate (0.7–1.4), pH (3–12), temperatures (18–70 ◦C),
owder activated carbon (PAC) (0.5–1.5 g in solution of 250 ml), HCO3

− (0–26 mM) and H2O2 concentrations (0–21 mM) were determined. The
zonation of 1:2 metal complex dyestuffs was found to be fit pseudo-first-order reaction, and the apparent rate constants did not change with the
ncrease of dyestuffs concentrations. For 1:2 metal complex dyestuffs, the apparent rate constants of dyestuffs degradation by ozonation increased
ith the augmentation of initial pH, H2O2, the percentage of O3 in the ozone–air flow rate and PAC dosage in the solution, but decreased with the

ncrease of HCO3
− concentration and temperature of the solution. The apparent rate constant of dyestuffs degradation by ozonation increased with

he augmentation of ozone–air flow rate from 5 to 10 l min−1, but it did not change in the range of 10–15 l min−1. At a high pH, the ozonation of
:2 metal complex dyestuffs contributed to the increase the apparent rate constant due to the occurrence of hydroxyl free radicals. Using Arrhenius
quation, the activation energy (Ea) of the reaction was found as 3 kJ mol−1. The reaction of the ozonation of the dyestuffs under the different
emperatures (291, 313 and 343 K) was defined as diffusion controlled according to Ea. The model based on artificial neural network (ANN) could

redict the concentrations of the dyestuffs removal from the aqueous solution during ozonation under the different conditions. A relationship
etween the predicted results of the designed ANN model and the experimental data was also conducted. The ANN model yielded a determination
oefficient of R2 = 0.978, a standard deviation ratio of 0.146, a mean absolute error of 19.503 and a root mean square error of 56.600.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Ozone can oxidize organics and inorganics to their highest
xidation states, depending on the molecular selectivity and
ecay rates [1]. The disintegration rate of ozone is affected
y temperature, pH and ozone concentration [2]. Ozone reacts
ith organic compounds dissolved in water through either direct

zone attack or indirect free radical attack. The hydroxyl radi-
als are generated by ozone disintegration in aqueous solutions
2]. During the ozonation process, dyestuffs lose their color by

∗ Corresponding author. Tel.: +90 442 231 4601.
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he oxidative cleavage of the chromophores. The cleavage of
arbon–carbon double bonds and other functional groups, which
ave high electron densities, will shift the absorption spectra of
he molecule out of the visible region [3].

Various types of dyes are used in many industries, such as
aint, textile, plastics, ink, and cosmetics. A large amount of
hem is lost in the process of their manufacturing and utilization
nd causes environmental problems. Dyestuffs regulation on
he discharge of dye-polluted colored wastewater has been get-
ing stringent in many countries. Of all chemically synthesized

yestuffs, azo dyes are produced in the largest quantities. The
reatment of dyes by activated sludge is ineffective. Generally,
dsorption on activated carbon and coagulation by a chemical
gent are applied to such effluents [4]. But these methods used

mailto:eoguz@atauni.edu.tr
dx.doi.org/10.1016/j.cej.2007.11.002
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n the treatment processes merely transfer dye from water into
olid and, thus further treatment process is necessary for the
ltimate solution.

The disposal of dye wastewater is an environmental concern
ince the associated color is quite noticeable to the public, and
ome azo dyes may have carcinogenic and teratogenic effects
n public health. Investigators have reported that conventional
reatment processes do not readily remove dyes from textile
astewater, because of their stability to light, and biological
egradation [5].

Although some treatment processes, such as chemical coag-
lation and carbon adsorption, may remove certain amount of
yestuffs to about 90% [6], the main drawback of these processes
s the generation of a large amount of sludge waste, resulting
n high operational costs for sludge treatment and disposal. An
ffordable and easy-operated control technology without the for-
ation of sludge is needed to comply with today’s demanding

egislation. One choice is advanced chemical oxidation. The use
f chlorinated oxidants, such as chloramine and chlorine diox-
de, is not suggested since toxic or less biodegradable chlorinated
y-products may be formed [7].

The main problem in the treatment of textile dying wastew-
ter and dye manufacture wastewater is the removal of dye
olor [8]. In the late 1950s, the trickling filters and activated
ludge processes were shown to be capable of removing the
olor of 84–93% in textile effluents. However, the color of
astewater from today’s new dyes is difficult enough to treat
y physical techniques, chemical processes and adsorption to
chieve complete decolorization, especially for highly solu-
le dyes. Apart from the physical methods of decolorization,
hemical oxidation using oxidants such as ozone, chlorine or
ypochlorite, hydrogen peroxide, potassium permanganate can
e used to destroy the dye to a colorless solution. The breakdown
roducts can be removed by conventional biological treatment
rocesses [9]. As one of the common oxidation agent, ozone has
een applied to many fields in water and wastewater treatment
nd is considered as one of the potential methods for a com-
ined treatment of effluents from textile dyeing and finishing
ndustry.

Activated carbon has a lot of many applications, one of which
s used as an efficient and versatile adsorbent for purification of
ater, air and many chemical and natural products [10]. This

s possible due to the highly porous nature of the solid and
ts extremely large surface area to volume ratio. Much of this
urface area is contained in micropores and mesopores. Cur-
ently, activated carbon has been an effective adsorbent for dye
emoval [11–15]. The adsorption capacity of a certain carbon
s known to be a function of porous structure, chemical nature
f the surface, and pH of the aqueous solution. In addition, the
dsorption process is influenced by the nature of the adsorbate
nd its substituent groups [16].

The main objective of this work is to study the degradation
inetics of the 1:2 metal complex dyestuffs and to define the

pparent rate constants by ozonation under the different experi-
ental conditions, such as dye concentrations (400–1000 ppm),

zone–air flow rates (5–15 l min−1), the percentage of O3 in
he ozone–air flow rate (0.7–1.4), pH (3–12), temperatures

F

M
4

g Journal 141 (2008) 119–129

18–70 ◦C), powder activated carbon (PAC) (0.5–1.5 g in solu-
ion of 250 ml), HCO3

− (0–26 mM) and H2O2 concentrations
0–21 mM). In addition to the apparent rate constants, the mod-
ling of artificial neural network (ANN) was used to predict
he concentrations of dyestuffs removed from aqueous solution
uring ozonation under the different conditions. A relation-
hip between the predicted results of the designed ANN model
nd experimental data was also conducted. In the result of
his study, the determination coefficient (R2), standard devia-
ion ratio, mean absolute error and root mean square error in
he modeling of ANN were defined as 0.978, 0.146, 19.503 and
6.600, respectively.

. Materials and methods

.1. Preparation of 1:2 metal complex dyestuffs

1:2 metal complex dyestuffs were used to prepare the dye
olutions of 400, 600, 800 and 1000 mg l−1 of which the values
f original pH are 9.3.

.2. Preparation of H2O2 and HCO3
− solutions

7, 14 and 21 mM hydrogen peroxide and 6, 13 and 26 mM
CO3

− solutions were prepared from hydrogen peroxide (50%
olution, 1.2 g/ml) and NaHCO3 (Merck), respectively.

The reason for the use of hydrogen peroxide is to increase
he OH• radicals in O3/H2O2 process because the oxidation
otential of hydroxyl radicals is much higher than that of the
zone molecules. Thus, the increase of OH• radicals in O3/H2O2
rocess showed a positive enhancement in the apparent rate
onstants.

HCO3
− ions in the O3/HCO3

− process were used to scav-
nge occurring OH• radicals during ozonation. It is likely that
icarbonate is the principal consumer of the hydroxyl radicals,
articularly when relatively high concentrations of bicarbonate
re present in water. The scavenging effect of bicarbonate also
ies in the fact that it reacts with hydroxyl radicals to generate
icarbonate radicals (HCO3

•−). These act as a very selective
dditional oxidation species and bicarbonate radicals have a
uch lower reaction rate constant than hydroxyl radicals for

he oxidation of organic micropollutants [17].

.3. Analytical methods

It was defined that 1:2 metal complex dyestuffs gave a peak
t 505 nm. Dye removal capacity was determined by absorbance
easurements at the maximum visible absorbance wavelength

f 505 nm. All the samples to measure dye concentrations were
nalysed at 505 nm [18–21].

Bomaplex Red CR-L dye used in this study is a basic dye
nd the chemical structure of this water-soluble dye is given in

ig. 1.

In the O3/PAC process, a commercial activated carbon from
erck was used as the adsorbent and its surface area was

55 m2/g [19–21].
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ig. 1. The general chemical structure of the Bomaplex Red CR-L group dyes.

.4. Ozonation studies

The ozonation reactor has been built by a glass column of 7-
m diameter, 40-cm height with a water-cooling jacket keeping
he reactor at constant temperature. Two hundred and fifty millil-
tres of solution was used for each batch ozonation. A magnetic
tirrer was used with the gas diffuser for sufficient circulation of
he dye solution. 1:2 metal complex dyestuffs used in this study
ere supplied from a textile mill in Turkey (Dye textile industry

ompany project, Gaziantep) [18–21]. The experimental set-up
hown in Fig. 2 includes an air dryer, compressor, ozone gen-
rator and semi-batch reactor having 1 l of volume. Ozone was
enerated using an ozonizer Model OG–24 [18–21].

Ozone was generated from air, and was supplied into the
ystem through an Opal OG-24 model ozonizer at the rates of
, 10 and 15 l min−1. The ozonation was performed in a cylin-
ric semi-batch glass reactor (volume 1 l). 1:2 metal complex
yestuffs were ozonated for 20 min in the semi-batch reactor.
he ozone–air mixture percentages (0.7, 1.1 and 1.4 O3%) were
ontinuously sparged through a diffuser in the solution [18–21].
.5. ANN software

In order to model the removal of dyestuffs with ANN, the
tatistica 6 software program was used.

k

c
t

Fig. 2. Ozonation system u
g Journal 141 (2008) 119–129 121

. Results

.1. Determination of the apparent rate constants of
yestuffs by ozonation

The ozonation of 1:2 metal complex dyestuffs was consid-
red as a second-order reaction with first-order relative to the
yestuffs [C] and ozone [O3] concentrations. The rate of 1:2
etal complex dyestuffs disappearance could be formulated by
q. (1)

= −dC

dt
= k[O3][C] (1)

here k is the second-order rate constant. When the amount of
zone is in excess, the reaction is pseudo-first-order with respect
o the dyestuffs. In this study, the pseudo-first-order trend was
bserved in each of the experimental runs. Hence, ozone con-
entration could be considered constant during reaction and the
xpression of the rate of 1:2 metal complex dyestuffs degradation
as given by Eq. (2).

= −dC

dt
= k′[C] (2)

here k′ is apparent first-order kinetic constant (min−1). There-
ore, a plot of ln[Co/C] versus the reaction time led to a straight
ine from which k′ could be determined. The apparent rate con-
tant of reaction was calculated from Eq. (3).

′ = k[O3] (3)

here [O3] is the ozone concentration (ozone saturation con-
entration).

The kinetics of removal of dyestuffs from the synthetic aque-
us solutions were investigated under the different experimental
onditions (Co: 400, 600, 800 and 1000 mg/l; Q: 5, 10 and
5 l min−1; T: 18, 40 and 70 ◦C; O3: 0.7, 1.1 and 1.4%; pH: 3,
, 9.3 and 12; HCO3

−: 0, 6, 13 and 26 mM; H2O2: 0, 7, 14 and
1 mM; PAC: 0, 0.5, 1 and 1.5 g). The results of this study which
ere realized at various experimental conditions are shown in
igs. 3–10. At different empirical conditions, the experimental
esults of dyestuffs ozonation showed that the ozonation reaction

inetics followed a pseudo-first-order reaction (R2 ≈ 1).

Fig. 3 shows the change of ln(Co/C) and the apparent rate
onstants versus time and the concentration of dyestuffs, respec-
ively. As seen in Fig. 3, the apparent rate constants do not change

sed in the oxidation.
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Fig. 3. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs. dyestuffs concentration (T: 18 ◦C, Q: 5 l min−1, O3: 1.4%, pH: 9.3, HCO3
−: 0 mM,

H2O2: 0 mM, PAC: 0 g).

Fig. 4. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs. ozone–air flow rate (Co: 1000 mg/l, T: 18 ◦C, O3: 1.4%, pH: 9.3, HCO3
−: 0 mM,

H2O2: 0 mM, PAC: 0 g).

Fig. 5. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs. O3% amount (Co: 1000 mg/l, T: 18 ◦C, Q: 5 l min−1, pH: 9.3, HCO3
−: 0 mM,

H2O2: 0 mM, PAC: 0 g).



E. Oguz et al. / Chemical Engineering Journal 141 (2008) 119–129 123

Fig. 6. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs. the value of pH (Co: 1000 mg/l, T: 18 ◦C, Q: 5 l min−1, O3: 1.4%, HCO3
−: 0 mM,

H2O2: 0 mM, PAC: 0 g).

Fig. 7. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs. the temperature of solution (Co: 1000 mg/l, pH: 9.3, Q: 5 l min−1, O3: 1.4%,
HCO3

−: 0 mM, H2O2: 0 mM, PAC: 0 g).

Fig. 8. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs. the PAC dosages used in the solution (Co: 1000 mg/l, pH: 9.3, Q: 5 l min−1, O3:
1.4%, HCO3

−: 0 mM, H2O2: 0 mM).
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ig. 9. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants

2O2: 0 mM, PAC: 0 g).

ith increase of dyestuffs concentration. It was thought that
nimportant changes in the apparent rate constants arose from
mpirical errors, but as seen from Fig. 3, these errors are not
ignificantly meaningful.

As seen in Fig. 4, the apparent rate constants in the dyestuffs
emoval increased with the increase of ozone–air flow rate
rom 5 to 10 l min−1, but the value of apparent rate constant
t 15 l min−1 did not change and this value was approximately
he same that at 10 l min−1. It was though that the reason for
he apparent rate constants at 10 and 15 l min−1 did not change
s due to the fact that the ozone–air flow rate at 15 l min−1 was
n large excess, and some of the ozone–air mixture left from
olution without dissolution.
Fig. 5 shows the change in apparent rate constants with the
ncrease of ozone generation percentages (from 0.7 to 1.4 O3%).
he apparent rate constants increased with the augmentation of
zone generation percentage. It was thought that the more double

o
o
t
a

ig. 10. (a) The plot of ln(Co/C) vs. time, (b) the plot of apparent rate constants vs.

3: 1.4%, HCO3
−: 0 mM, PAC: 0 g).
e HCO3
− ion concentration (Co: 1000 mg/l, pH: 9.3, Q: 5 l min−1, O3: 1.4%,

onds in molecular O2 were broken with the increase of ozone
eneration percentage, the more molecules of O3 occurred. O3
olecules attracted to the double bonds in the dye molecules,

nd these bonds were broken by ozone. With more dye molecule
egradation, more dye molecules were removed from aqueous
olution, and thus the apparent rate constant at the value of 1.4
3% was max as seen from Fig. 5.
At various initial pH values (3, 6, 9.3 and 12), the change of

pparent rate constants of 1:2 metal complex dyestuffs by ozona-
ion was investigated, and it was shown in Fig. 6. The apparent
ate constants of 1:2 metal complex dyestuffs were found to have
ncreased with the augmentation of pH during ozonation time.
s known, ozone oxidation pathways include direct oxidation by

zone or radical oxidation by OH• radical. Direct oxidation with
zone is more selective and predominates under acidic condi-
ions, while radical oxidation with OH• radical is less selective
nd predominates under basic conditions. Since the oxidation

the H2O2 concentration in the solution (Co: 1000 mg/l, pH: 9.3, Q: 5 l min−1,
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otential of hydroxyl radicals is 2.08 V and much higher than
hat of the ozone molecule (1.86 V), direct oxidation is slower
han radical one. During an ozonation of 20 min, the increase
n the solution pH showed a positive enhancement on the ozone
xidation of 1:2 metal complex dyestuffs. The ozonation of the
yestuffs at the various initial pH values (3, 6, 9.3 and 12) was
xamined, and it was observed that the values of apparent rate
onstants increased with the augmentation of pH as seen from
ig. 6.

Ozone disintegration in aqueous solutions generates hydroxyl
adicals. At higher pH, ozone reacts with hydroxide ions, and
hen forms hydroxyl radicals. Due to fact that the oxidation rate
ncreases with the augmentation of pH values, the pH of solution
irectly affects the mechanism of oxidation. Thus, the value of
′ increases at the values of pH higher than 9.

As seen from Fig. 7, as a result of the ozonation of the
yestuffs, the values of the apparent rate constants decreased
ith the increase of temperature from 18 to 70 ◦C. After a 20 min
zonation, the highest value of apparent rate constant connected
ith temperature was received at 18 ◦C. It was thought that the
ecrease of ozone solubility in the solution with the increase of
emperature caused the decrease in the values of apparent rate
onstants.

At the different PAC dosages such as 0, 0.5, 1 and 1.5 g in
he solution of 250 ml, the values of apparent rate constants
f dyestuffs by ozonation are shown in Fig. 8. The values of
pparent rate constants of dyestuffs by ozonation increased with
he augmentation of PAC dosage from 0 to 1 g, but remained
nchanged from 1 to 1.5 g. In the present study, it was thought
hat PAC played an important role as adsorbent. The PAC used
o remove dyestuffs from synthetic aqueous solution has quite
positive effect on the treatment of dyestuffs wastewater. As is
nown, the ozone dissolved in the solution is consumed by PAC
articles. Two mechanisms are involved in the oxidation of car-
on black by ozone: (i) direct oxidation of elemental carbon to
O2; and (ii) oxidation of elemental carbon to intermediate and

ubsequently oxidation to CO2 [22,23]. Because of these mech-
nisms, it was thought that PAC particles of 1.5 g which were too
uch in the solution partly prevented ozone molecules to react
ith the dyestuffs molecules and the PAC particles consumed
issolved ozone concentration in the solution. Because of these
easons, at the level of PAC of 1.5 g, the value of apparent rate
onstant of dyestuffs by ozonation did not change as seen from
ig. 8.

Fig. 9 shows the value of apparent rate constants in the
3/HCO3

− process. HCO3
− ions in the O3/HCO3

− process
cavenge the produced from ozonation OH• radicals. Bicarbon-
te ions are the principal consumer of the hydroxyl radicals,
articularly when relatively high concentrations of bicarbonate
re present in water. HCO3

− ions react with hydroxyl radicals
o generate bicarbonate radicals (HCO3

•−) [24]. It was reported
hat bicarbonate ions scavenged hydroxyl radicals to produce
ntermediates, not releasing a radical-type chain carrier, thereby

uenching the radical type chain reaction [24]. Because of the
cavenging effect of bicarbonate ions on the OH• radicals, the
alue of apparent rate constants of dyestuffs ozonation decreased
ith the increase of HCO3

− ion concentration. When HCO3
−

w
n
c
s

Fig. 11. The plot of ln(k) vs. (1/T).

ons were not used in the aqueous solution, the value of apparent
ate constant received a max value as seen from Fig. 9.

Since the oxidation potential of hydroxyl radicals is much
igher than that of the ozone, direct oxidation by ozone is slower
han radical one. The increase of OH• radicals in the solution
howed a positive enhancement in the apparent rate constants,
nd the value of apparent rate constant in the H2O2/O3 process
ncreased with the augmentation of H2O2 concentration in the
olution as depicted in Fig. 10.

Arrhenius equation used to define the value of activation
nergy (Ea) is given by the Eq. (4)

n k = ln A − Ea

R

1

T
(4)

here k, A, Ea, R and T, reaction rate constant, pre-
xponential factor, activation energy (J mol−1), ideal gas
onstant (8,314 J mol−1 K−1) and temperature (K), respectively.

plot of ln k versus 1/T would result in a straight line with a
lope of (−Ea/R) and intercept of ln A as seen in Fig. 11.

The value of Ea calculated using the Arrhenius equation
as found as 3 kJ mol−1 which was smaller than the value of
0 kJ mol−1. Thus, the reaction of ozonation of dyestuffs under
he different temperatures such as 291, 313 and 343 K was
efined as diffusion control.

.2. Application of artificial neural network (ANN)

The linear model presents the disadvantage to give a relation-
hip very satisfying for an oxidation study, subject to the real
ndependence of variables. In fact, it is reasonable to consider
hat such variables are not exactly independent. ANN approach
eems to be completely suitable to the problems where the rela-
ions between variables are not linear and complex [25].

ANNs are direct inspiration from the biology of human brain,
here billions of neurons are interconnected to process a vari-

ty of complex information, accordingly, a computational neural
etwork consists of simple processing units called neurons.
ach neuron (a processing element) is linked to its neighbors

ith varying strengths, the strength of connection between two
eurons is called weight and is represented by coefficients of
onnectivity w. The architecture of ANNs used in this study is
hown in Fig. 12.
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Fig. 12. The architecture of the ANNs used in this study.

As shown in Fig. 12, a neural net is parallel interconnected
tructure consisting of: (1) input layer of neuron (independent
ariables); (2) a number of hidden layers; and (3) output layer
dependent variables). The number of input and output neurons
s determined by the nature of the problem. The hidden layers act
ike feature detectors and in theory, there can be more than one
idden layer. Universal approximation theory suggests that a net-
ork with a single hidden layer with a sufficiently large number
f neurons can interpret any input–output structure [26]. Input
eurons accept the input data characterizing a given observa-
ion (experiment), output neurons yield the predicted (expected)
alue. A neuron sums the product of each connection weight
wjk) from a neuron (j) to the neuron (k) and input (xj) and the
dditional weight called as the bias to get the value of sum for
he neuron (k):

um k =
∑

wjkxj + biask

he sum of the weighted inputs is further transformed with a
ransfer function to get the output value, and there are several
ransfer functions; the most common is the sigmoidal function
27].

There are a lot of different training algorithms. Some
f these are back propagation, conjugate gradient descent,
uasi-Newton, quick propagation and Levenberg–Marquardt. A
opular algorithm is the back propagation, which has different
ariants. Back propagation training algorithms that employ gra-
ient descent and gradient descent with momentum are often too
low for practical problems because they require small learning
ates for stable learning. This algorithm has problem in converg-
ng properties. In addition, the success in the algorithm depends

n the user-dependent parameters, learning rate and momentum
onstant [28].

The Levenberg–Marquardt algorithm yielded best results in
his study. This algorithm is a variation of Newton’s method

S
m
d

g Journal 141 (2008) 119–129

hich is designed for minimizing functions that are sums of
quare of other nonlinear functions. This is very well suited to
eural network training where the performance index is the mean
quared error. Levenberg–Marquardt algorithm is shown in Eq.
5) [29].

k+1 = xk − [JT (xk)J(xk) + μkI]
−1

JT (xk)υ(xk) (5)

here J, μk, I, xk are Jacobian matrix, Marquardt parameter, unit
atrix and iteration k, respectively. This algorithm has the very

seful feature that as μk is increased it approaches the steepest
escent algorithm. As μk is decreased to zero the algorithm
ecomes Gauss–Newton.

In this study, one-layered back propagation neural network
as used for modeling of the removal of dyestuffs with ozona-

ion (Fig. 12). The input variables to the neural network are as
ollows: the treatment time (t), the initial concentration of H2O2,
emperature, PAC, ozone–air flow rate, the percentages of O3 in
he ozone–air flow rate, pH and HCO3

− ion concentration. The
oncentration of removal of dyestuffs, as a function of reac-
ion time, was chosen as the experimental response or output
ariable.

Before the training of the network, both input and output
ariables were normalized within the range 0–1 using mini-
ax algorithm. The minimum and maximum of the data set
ere found and scaling factors were selected so that these were
apped to desired minimum and maximum values. The mini-
ax algorithm is given by Eq. (6)

′ = H

{
1

HMAX − HMIN

}
scale factor

−
{

HMIN

HMAX − HMIN

}
shift factor

(6)

here Hmax and Hmin, respectively indicate the largest and
mallest values of H, and H′ the unified value of the correspond-
ng H. Normalization of the data greatly improves learning speed
nd it is beneficial in reducing the error of the trained network.

Of the 203 experimental data sets were divided into three
ections: the training set (143 data), verification set (30 data) and
est set (30 data). Training algorithms do not use the verification
r test sets to adjust network weights. The verification set may
ptionally be used to track the network’s error performance,
o identify the best network and to stop training if over-learning
ccurs. The test set is not used in training at all, and it is designed
o give an independent assessment of the network’s performance
hen an entire network design procedure is completed. Seventy
ercent of the data set was used to train the network, while the
emaining 30% was employed for testing and verification. The
ssignment of cases to the training, verification and test subsets
an sometimes affect the performance of training algorithms.
n order to eliminate this situation, the cases should be shuffled
andomly between subsets. The cases can be left in their original
rder, or grouped together in the subsets. In this model, the
ases were shuffled randomly between subsets (training, test
nd verification).
In order to model the dyestuffs concentrations with ANNs, the
tatistica software program was used. The coefficient of deter-
ination (R2), the root mean square error (RMSE), the standard

eviation ratio (SDR), and the mean absolute error (MAE) are
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he main criteria that are used to evaluate the performance of
NN, and they are defined as follows [30,31]:

= n
(∑

observed − predicted
) − (∑

observed
) (∑

p√[
n

∑
observed2 − (∑

observed
)2

] [
n

∑
predicted2 −

MSE =
√

(observed − predicted)2

n
(8)

DR =
√

n
∑

observed2 − (∑
observed

)2
/n(n − 1)√

n
∑

error2 − (∑
error

)2
/n(n − 1)

(9)

AE =
∑ |observed − predicted|

n
(10)

efore the network was trained, the input and the output data
ad been normalized, and the scale and shift factors which were
sed in every input and output were given in Table 1.

After long training phases, the best result was obtained from
he Levenberg–Marquardt algorithm. The hyperbolic tangent
unction in the hidden layer and the linear activation function
n the output layer were used in the model. It was observed
hat optimal network was found to be eight inputs; one hidden
ayer with ten neurons and one output layer, the optimal network
rchitecture (8 × 10 × 1) is shown in Fig. 12.

Statistica Neural Networks can conduct a sensitivity anal-
sis on the inputs to a neural network. This indicates which
nput variables are considered most important by that particular
eural network. There are also facilities to prune out input vari-
bles with low sensitivity. Sensitivity analysis can give important
nsights into the usefulness of individual variables. It often iden-
ifies variables that can be safely ignored in subsequent analysis,

nd key variables that must always be retained. Input variables
re removed from the network that has low sensitivity (i.e. that
ave no significant effect on the accuracy of the network). Units
ith both training and verification ratios below the threshold are

able 1
hift and scale factors

arameters Shift Scale

(treatment time) (min) 0 0.033
(ozone–air flow rates) (l min−1) −0.500 0.100

3 (O3 amounts in the ozone–air flow rate) (%) −1 1.428
H −0.333 0.111
(temperature) (◦C) −0.346 0.019

AC (powder activated carbon) (g) 0 0.666
CO3

− (hydrogen peroxide mM) (mM) 0 0.038

2O2 (bicarbonate) (mM) 0 0.047

t (the dyestuffs concentration at time t) (ppm) 0 0.001

p
p
c
m

d
t
a
d
o
s
t
p

p
fl
t

able 2
ensitivity analysis results

t Q O3% pH

atio 7.548 1.516 2.484 1.204
ank 1 4 3 7
g Journal 141 (2008) 119–129 127

cted
)

predicted
)2

] (7)

emoved. A ratio of 1.0 indicates that the variable has no positive
ffect on the model at all, and can definitely be removed. A

atio below 1.0 indicates that the model actually performs better
f the variable is removed. The results of the sensitivity analysis
ere given in Table 2.
When Table 2 is examined, it is easy to see that the most

mportant parameters that affect the removal of concentration of
yestuffs are the treatment time (t), temperature (T), O3%, Q,
AC, HCO3

−, pH, and H2O2, respectively. It the result of in this
tudy, the general equation obtained from the optimal network
as given as follows:

t = f2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w2f1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t

Q

O3

pH

T

PAC

HCO−
3

H2O2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

here w1 and w2 are the weight matrices, b1 and b2 are the biases
ectors. Under the different experimental conditions along the
eaction time, the interpretation of the experimental results was
ased on the fitting of neural network models for predicting
he removal of concentration of dyestuffs by ozonation. The
roposed model based on artificial neural network (ANN) could
redict the dyestuffs concentration during ozonation time. A
omparison between the predicted results of the designed ANN
odel and experimental data was also conducted.
According to the ANN model fundamentals, with use of more

ata for training the network, better result would be obtained. In
he early standard algorithm, random initial set of weights were
ssigned to the neural network, and then by considering the input
ata, weights were adjusted, and thus the output error would be
n its minimum. The results from general ANN modeling were
hown in Fig. 13. Four data in Fig. 13 were outliers but it was
hought that these data which were outliers would not affect the
erformance of general model.
The general model from the ANN belonging to all of the
arameters (ozone–air flow rates, O3% amounts in the ozone–air
ow rate, pHs, temperatures, PAC, HCO3

− and H2O2 concen-
rations) was given in Fig. 13.

T PAC HCO3
− H2O2

2.572 1.499 1.373 1.083
2 5 6 8
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Fig. 13. Comparison between observed and predicted values relating to general
modeling (R2 = 0.978).

Table 3
The statistical values of ANN model (8 × 10 × 1)

R2 0.978
SDR 0.146
R
M

i
t
a
c
c

t
A
o
d
a
t

t

Fig. 15. Relative error distribution.

n
f
t

MSE 56.600
AE 19.503

The results of statistical analysis of ANN were summarised
n Table 3. It was seen that the ANN model had determina-
ion coefficient of (0.978), SDR of (0.146), RMSE of (56.600)
nd MAE of (19.503). The results obtained in this model indi-
ate that ANN model has the ability to predict the removal of
oncentration of dyestuffs.

In the ANN modeling, it was seen that the error distribu-
ions of the model did not show complete normal distribution.
lmost every value predicted in the model and the distribution
f the errors are very close to the zero line as seen Fig. 14. Error
istributions do not show complete normal distribution. It was
lso observed that almost every value predicted in the model and

he distribution of the errors were not in the line of zero.

Every value predicted in the model and the distribution of
he errors are very close to the zero line. The error histogram is

Fig. 14. Residuals vs. predicted values.

f
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Fig. 16. Normal probability plot of residuals.

ot widely open to the right and left directions. The zero error
requency is high and also in the model the predicted values
ogether with the observed values are in good agreement as seen
rom Fig. 15. Moreover, the explanatory variables in the models
o explain the dependent variable are found to be satisfactorily
ufficient.

In a good model, the residuals show normal distribution.
he assumption of normality can be checked by plotting the

esidual versus expected normal values. The normal probability
lot of the residuals for ANN is shown in Fig. 16 which shows
n approximately linear behavior, indicating that the residuals
ollow an approximately normal distribution.

. Conclusion

This study demonstrated that dye degradation by ozonation
nder the different conditions tested fitted the pseudo-first-order
eaction. The apparent degradation rate constants of 1:2 metal
omplex dyestuffs increased with the augmentation of ozone–air

ow rate from 5 to 10 l min−1, but it did not change from 10 to
5 l min−1. At a high pH, the ozonation of dyestuffs contributed
o the increase of the apparent rate constant because of occurring
ydroxyl free radicals. The activation energy (Ea) of the reaction
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as found 3 kJ mol−1 using Arrhenius equation. The reaction of
zonation of dyestuffs under the different temperatures (291,
13 and 343 K) was defined as diffusion-controlled because
he value of Ea was smaller than 20 kJ mol−1. Artificial neu-
al network modeling was used to investigate the cause–effect
elationship in the ozonation processes of dyestuffs. The ANN
odel could describe the behavior of the synergic reaction

ystem (O3/PAC, O3/H2O2, O3/HCO3
− processes). Simulation

ased on the ANN model can then be performed in order to esti-
ate the behavior of the system under different conditions. The
odel based on artificial neural network (ANN) could predict

he concentrations of dyestuffs removal from aqueous solution
uring ozonation under the different conditions. A relationship
etween the predicted results of the designed ANN model and
xperimental data was also conducted. At the result of ANN
odel, the values of determination coefficient (R2), standard

eviation ratio, mean absolute error and root mean square error
ere obtained as 0.978, 0.146, 19.503 and 56.600, respectively.
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